
Gas Clogging During 

Spreading Basin Recharge

Victor Heilweil

US Geological Survey

Kip Solomon 

University of Utah



Entrapped 

gases in 

aquifers

• Entrapped air is no longer connected to the atmosphere, 

occurring in the form of small, immobilized, disconnected bubbles 
(Faybishenko, WRR,1995)

• Entrapped air and other gases have been documented to 

occupy 7 to 20 % of otherwise saturated pore spaces            
(Beckwith and Baird, WRR, 2001; Heilweil et al., GW, 2004)

From Glass and Nichols, GRL, 1995



Sources of gas bubbles

• Entrapped air:  bubbles formed during 

saturation as the water table rises in 

response to artificial or natural recharge 
(Constantz et al., SSSA, 1988; Holocher et al., EST, 2003)

• Biogenic gas production: CO2 and CH4

bubbles formed by respiration and decay 

of organic material in sediments beneath 

a spreading basin (Beckwith and Baird, WRR, 2001; 

Heilweil et al., BGM, 2009)

• Denitrification: N2 gas bubbles produced 

during biodegredation by denitrifying 

bacteria (Oberdorfer and Peterson, GW, 1985)



Pore-throat clogging reduces permeability

Entrapped gas bubbles 

typically block the largest 

pore throats, causing 

increased tortuosity and 

permeability reduction



Managed Aquifer Recharge at Sand Hollow

West

East

2 km

Reservoir

• Spreading basin MAR

• Navajo Sandstone Aquifer

Pond 

Experiment

Heilweil et al., USGS Tech Pub 116, 2000



Navajo 

Formation

• Well-sorted eolian 

sandstone

• Porosity ~ 20 %

• Ksat~ 0.7 m/d



• Estimate long-term saturated infiltration rates

• Evaluate permeability reduction caused by trapped gas

Goals:

Pond Experiment, 2000-2001

Heilweil et al., Ground Water, 2004



Intrinsic permeability 

doubled during the first 

four months

Increase caused by gas 

dissolution and 8% 

reduction in bubble 

volume with cooler 

temperatures cooled 

from 30˚ to 5˚C
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Gas-partitioning tracer test

• Dissolved bromide and helium 

added to pond

• Helium is low solubility and 

partitions to gas phase, 

causing retardation

• Transfer from aqueous to gas 

phase determined by Henry’s 

Law:     Caq = H’Cg

• If equilibrium transfer, gas-

filled porosity calculated from 

retardation of helium:                  

g = (R-1)/H’



• Helium substantially 

retarded at all ports

• Observed retardation 

factors of 2 to 12

22 days

156 

days

Port at 1.5 m beneath pond

• Saturated conditions 

observed in upper 2 m 

beneath pond



• Helium transfer 

was kinetically 

limited

• 7 to 13 % of 

porosity filled with 

trapped gas

CXTFIT Modeling

Heilweil et al., Groundwater, 2004

(Heilweil et al., GW, 2004)



Unsaturated laboratory K(θ) results

Testing indicates that 

10% trapped air in the 

Navajo Sandstone 

causes a 10-fold 

reduction in hydraulic 

conductivity
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Sand Hollow Reservoir completed

2002



Conceptual Model
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Sand Hollow Reservoir Recharge
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• Recharge rates much lower than Ksat of 0.7 m/d

• Calibration of MODFLOW model to Ksat and hydraulic 

gradients indicates clogging layer must exist

• Likely combination of siltation and gas bubbles

(Heilweil and Marston, USGS SIR, 2011)



Dissolution of trapped gas bubbles

• Trapped gas bubbles will dissolve according to Henry’s 

Law

• Dissolution of gases can occur as quickly as hours or as 

slow as years (Glass and Nicholl, GRL,1995; Heilweil et al., GW, 2004)

• Dissolution rate dependent on:

– Water temperature (more soluble in cooler water)

– Hydrostatic head (more soluble under higher pressure)

– Rate of flow by gas bubble (number of pore volumes)

– Gas solubility (O2 dissolves more readily than N2)



Excess Gas/Air

• Trapped gas/air dissolved to become excess gas/air 
(Heaton and Vogel, 1981)

• Since surface water contains little excess air, it can be 

used as a tracer of artificial recharge (Clark and Hudson, 2005; 

Massmann and Sultenfub, J. Hydrol. 2008) 

• Potential tracers of artificial recharge include:

• Total dissolved gas pressure (TDGP)

• Dissolved oxygen (DO)

• Neon excess (Δ Ne)

• Noble-gas excess air (Ea)



Near-field 

monitoring 

wells for 

dissolved-

gas 

sampling
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• Conservative tracer

• Measured with TDGP probe or Diffusion Sampler 

• High pressures (> 3 atmospheres) = large amount of trapped gas

?

(Heilweil and Marston, 2004)



Dissolved Gas Tracer Peaks

Site

Distance 
from 

Reservoir 
(m)

Peak 
TDGP 

(mm Hg)

Peak 
DO 

(mg/L)

Peak 
Neon 
Excess

WD 9 20 >2250 26 250%

WD 11 50 >2250 25 320%

WD 6 300 1700 22 160%



Noble Gases
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• Each gas has different 

solubility

• If a bubble partially 

dissolves, dissolved gases 

will be preferentially 

enriched in heavier noble 

gases (Xe, Kr)

• This fractionation factor 

(F) can be used to 

evaluate when trapped 

gas is dissolved



Calculation of time to dissolve trapped air

Assumptions:

• 30 m3 total volume

• 30-m rise in water table x 20% porosity = 6 m3

• 20% air-filled porosity  = 1.2 m3 trapped air

• 80% saturated porosity = 4.8 m3 water

• Trapped air predominantly N2 (78% of atmosphere)

• Increased nitrogen solubility with hydrostatic 

pressure

Calculations:

• 45 m3 of water to dissolve trapped air

• 9 pore volumes at Q = 0.014 m3/d

 9 years to dissolve majority of trapped air

 Gas dissolution by 2010?

1.2 m3 

trapped air

4.8 m3 

water

24 m3 

aquifer 

solids

Q = 0.014 

m3/d

30 m3 

total 

unit 

volume



Increased recharge rates during 2008-2009 

may be due to gas dissolution around 

edges of reservoir
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Same volume of trapped gas would dissolve 

much faster in more permeable materials

Material
Ksat

(m/d)
K(θ) 

(m/d)
Q 

(m3/d)

Estimated 
Dissolution 
Time (days)

Sandstone 0.7 0.12 0.014 3,200

Medium sand 5 1.04 0.125 360

Gravel 50 13.9 1.667 30

Cobbles 250 104 12.5 4



Summary
• Entrapped gas clogs  pore throats and causes significant 

permeability reduction

• Effects are more pronounced in finer-grained materials

• Entrapped gas will eventually dissolve with increased 

hydrostatic pressure

• The dissolution process can be monitored with TDGP, DO, and 

noble gases (Neon Excess, Ae, F)

• It may take about a decade to dissolve most of the trapped gas 

beneath Sand Hollow; much less time for recharge facilities 

located on higher permeability sediments
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